Reverse engineering Green Globs

Line

  1. \(y = b,\ b \in \mathbb{Z}_{\gt 0}\)
  2. \(y = b,\ b \in \mathbb{Z}_{\lt 0}\)
  3. \(y = x\)
  4. \(y = -x\)
  5. \(y = x + b,\ b \in \mathbb{Z}_{\gt 0}\)
  6. \(y = x - b,\ b \in \mathbb{Z}_{\gt 0}\)
  7. \(y = -x + b,\ b \in \mathbb{Z}_{\gt 0}\)
  8. \(y = -x - b,\ b \in \mathbb{Z}_{\gt 0}\)
  9. \(y = mx,\ m \gt 0\)
  10. \(y = -mx,\ m \gt 0\)
  11. \(y = mx + b,\ m, b \in \mathbb{Z}_{\gt 0}\)
  12. \(y = mx - b,\ m, b \in \mathbb{Z}_{\gt 0}\)
  13. \(y = -mx + b,\ m, b \in \mathbb{Z}_{\gt 0}\)
  14. \(y = -mx - b,\ m, b \in \mathbb{Z}_{\gt 0}\)
  15. \(y = mx,\ m \in \mathbb{Q}_{\gt 0}\)
  16. \(y = -mx,\ m \in \mathbb{Q}_{\gt 0}\)
  17. \(y = mx + b,\ m \in \mathbb{Q}_{\gt 0},\ b \in \mathbb{Z}_{\gt 0}\)
  18. \(y = -mx + b,\ m \in \mathbb{Q}_{\gt 0},\ b \in \mathbb{Z}_{\gt 0}\)
  19. \(y = mx - b,\ m \in \mathbb{Q}_{\gt 0},\ b \in \mathbb{Z}_{\gt 0}\)
  20. \(y = -mx - b,\ m \in \mathbb{Q}_{\gt 0},\ b \in \mathbb{Z}_{\gt 0}\)

Parabola

  1. \(y = x^2\)
  2. \(y = -x^2\)
  3. \(y = x^2 - k,\ k \in \mathbb{Z}_{\gt 0}\)
  4. \(y = -x^2 + k,\ k \in \mathbb{Z}_{\gt 0}\)
  5. \(y = (x - h)^2,\ h \in \mathbb{Z}_{\gt 0}\)
  6. \(y = -(x - h)^2,\ h \in \mathbb{Z}_{\gt 0}\)
  7. \(y = (x + h)^2,\ h \in \mathbb{Z}_{\gt 0}\)
  8. \(y = -(x + h)^2,\ h \in \mathbb{Z}_{\gt 0}\)
  9. \(y = (x - h)^2 + k,\ h, k \in \mathbb{Z}_{\gt 0}\)
  10. \(y = (x - h)^2 - k,\ h, k \in \mathbb{Z}_{\gt 0}\)
  11. \(y = (x + h)^2 - k,\ h, k \in \mathbb{Z}_{\gt 0}\)
  12. \(y = (x + h)^2 + k,\ h, k \in \mathbb{Z}_{\gt 0}\)
  13. \(y = -(x + h)^2 + k,\ h, k \in \mathbb{Z}_{\gt 0}\)
  14. \(y = -(x + h)^2 - k,\ h, k \in \mathbb{Z}_{\gt 0}\)
  15. \(y = 2x^2 - k,\ k \in \mathbb{Z}_{\gt 0}\)
  16. \(y = ax^2 - k,\ a, k \in \mathbb{Z}_{\gt 0}\)
  17. \(y = \dfrac{1}{2}x^2 - k, k \in \mathbb{Z}_{\gt 0}\)
  18. \(y = \dfrac{1}{10}x^2 - k, k \in \mathbb{Z}_{\gt 0}\)
  19. \(y = a(x - h)^2 - k,\ a, h, k \in \mathbb{Z}_{\gt 0}\)
  20. \(y = \dfrac{-1}{a}(x - h)^2 - k,\ a, h, k \in \mathbb{Z}_{\gt 0}\)