Reverse engineering Green Globs
Line
- \(y = b,\ b \in \mathbb{Z}_{\gt 0}\)
- \(y = b,\ b \in \mathbb{Z}_{\lt 0}\)
- \(y = x\)
- \(y = -x\)
- \(y = x + b,\ b \in \mathbb{Z}_{\gt 0}\)
- \(y = x - b,\ b \in \mathbb{Z}_{\gt 0}\)
- \(y = -x + b,\ b \in \mathbb{Z}_{\gt 0}\)
- \(y = -x - b,\ b \in \mathbb{Z}_{\gt 0}\)
- \(y = mx,\ m \gt 0\)
- \(y = -mx,\ m \gt 0\)
- \(y = mx + b,\ m, b \in \mathbb{Z}_{\gt 0}\)
- \(y = mx - b,\ m, b \in \mathbb{Z}_{\gt 0}\)
- \(y = -mx + b,\ m, b \in \mathbb{Z}_{\gt 0}\)
- \(y = -mx - b,\ m, b \in \mathbb{Z}_{\gt 0}\)
- \(y = mx,\ m \in \mathbb{Q}_{\gt 0}\)
- \(y = -mx,\ m \in \mathbb{Q}_{\gt 0}\)
- \(y = mx + b,\ m \in \mathbb{Q}_{\gt 0},\ b \in \mathbb{Z}_{\gt 0}\)
- \(y = -mx + b,\ m \in \mathbb{Q}_{\gt 0},\ b \in \mathbb{Z}_{\gt 0}\)
- \(y = mx - b,\ m \in \mathbb{Q}_{\gt 0},\ b \in \mathbb{Z}_{\gt 0}\)
- \(y = -mx - b,\ m \in \mathbb{Q}_{\gt 0},\ b \in \mathbb{Z}_{\gt 0}\)
Parabola
- \(y = x^2\)
- \(y = -x^2\)
- \(y = x^2 - k,\ k \in \mathbb{Z}_{\gt 0}\)
- \(y = -x^2 + k,\ k \in \mathbb{Z}_{\gt 0}\)
- \(y = (x - h)^2,\ h \in \mathbb{Z}_{\gt 0}\)
- \(y = -(x - h)^2,\ h \in \mathbb{Z}_{\gt 0}\)
- \(y = (x + h)^2,\ h \in \mathbb{Z}_{\gt 0}\)
- \(y = -(x + h)^2,\ h \in \mathbb{Z}_{\gt 0}\)
- \(y = (x - h)^2 + k,\ h, k \in \mathbb{Z}_{\gt 0}\)
- \(y = (x - h)^2 - k,\ h, k \in \mathbb{Z}_{\gt 0}\)
- \(y = (x + h)^2 - k,\ h, k \in \mathbb{Z}_{\gt 0}\)
- \(y = (x + h)^2 + k,\ h, k \in \mathbb{Z}_{\gt 0}\)
- \(y = -(x + h)^2 + k,\ h, k \in \mathbb{Z}_{\gt 0}\)
- \(y = -(x + h)^2 - k,\ h, k \in \mathbb{Z}_{\gt 0}\)
- \(y = 2x^2 - k,\ k \in \mathbb{Z}_{\gt 0}\)
- \(y = ax^2 - k,\ a, k \in \mathbb{Z}_{\gt 0}\)
- \(y = \dfrac{1}{2}x^2 - k, k \in \mathbb{Z}_{\gt 0}\)
- \(y = \dfrac{1}{10}x^2 - k, k \in \mathbb{Z}_{\gt 0}\)
- \(y = a(x - h)^2 - k,\ a, h, k \in \mathbb{Z}_{\gt 0}\)
- \(y = \dfrac{-1}{a}(x - h)^2 - k,\ a, h, k \in \mathbb{Z}_{\gt 0}\)