If \(y = a\sinh[u(x)],\) then \(\dfrac{dy}{dx} = a\cosh[u(x)] \cdot \dfrac{du}{dx}\)

If \(y = a\cosh[u(x)],\) then \(\dfrac{dy}{dx} = a\sinh[u(x)] \cdot \dfrac{du}{dx}\)

Find the derivative: \(f(x) = \tanh(4x)\)

Find the derivative: \(f(x) = \ln[\sinh(x)]\)

Find the derivative: \(f(x) = \sinh[\cosh(x)]\)

Find the derivative: \(f(x) = \sinh^{-1}[\tan(x)]\)

Find the derivative: \(f(x) = 6\cosh(7x)\)

Find the derivative: \(f(x) = \tanh(x)e^{\cosh(x)}\)

Find the derivative: \(f(x) = 8\ln[\cosh(2x)]\)