• TOC
  • Courses
  • Blog
  • Twitch
  • Shop
  • Search
    • Courses
    • Blog
    • Subreddit
    • Discord
    • Log in
    • Sign up
    • ▾Calculus 1
      • ▸Limits and continuity
        • •Intro to calc 1
        • •Estimating limits from graphs
        • •Estimating limits from tables
        • •Intro to continuity
        • •Finding and classifying discontinuities
        • •Finding the value that makes the function continuous
      • ▸Derivatives: definition and basic derivative rules
        • •Proving differentiable implies continuous
        • •Derivative of a function from first principles
        • •Finding the tangent or normal line through the given point
        • •Constant rule
        • •Constant multiple rule for derivatives
        • •Sum, difference, and power rules for derivatives
        • •Product rule
        • •Proving the product rule
        • •Quotient rule
        • •Derivatives of trig functions
        • •Proving properties of even and odd functions (calculus 1)
        • •Leibniz's derivative notation
        • •Logarithmic functions
      • ▸Derivatives: composite, implicit, and inverse functions
        • •Derivative at a point from first principles
        • •Derivatives of exponential functions
        • •Derivatives of logarithmic functions
        • ▸Derivatives of hyperbolic and inverse hyperbolic functions
          • •Using the derivatives of the hyperbolic functions
          • •Proving the derivatives of the hyperbolic functions
          • •Proving the derivatives of the inverse hyperbolic functions
        • •Derivatives of inverse trig functions
        • •Derivatives of transcendental functions
        • •Derivatives of trigonometric functions under transformations
        • •Derivative using u-substitution
        • •Determining derivatives from graphs
        • •Higher order derivatives
        • •Chain rule
        • •Derivatives of inverse functions
        • •Choosing the derivative rules to use
      • ▸Applying derivatives to analyze functions
        • •Applications of trigonometric derivatives
        • •Extreme value theorem
        • •First derivative test
        • •Mean value theorem
        • ▸Monotonic intervals and functions
          • •Intro
          • •Proofs
        • •Related rates
        • •Second derivative test
        • •Concavity
        • •Factoring a cubic polynomial with a double root
        • •Graphing using derivatives
        • ▸Special points
          • ▸Finding critical values from graphs
            • •Lesson
            • •Practice
          • •Finding critical values using derivatives
          • ▸Inflection points
            • •Graphically finding points of inflection
            • •Using the second derivative to find points of inflection
          • •Classifying stationary points
          • •Sketching polynomials using stationary points
        • •Bisection method
        • •Newton's method
        • •False position method
        • •L'Hopital's rule
      • ▾Integrals
        • •Basic integration problems
        • ▾Integration by u-substitution
          • ▾Integration by u-substitution (less difficult)
            • •Lesson
            • •Practice
          • •Integration by u-substitution (more difficult)
          • •Integrating exponential functions by u-substitution
        • •Visually determining antiderivative
      • ▸Applications of integrals
        • •Proving the formula for the area of a circle
        • •Area between two curves
        • ▸Solids of revolution
          • •Disc and washer methods (circular cross sections)
          • •Volumes of solids with known cross sections
          • •Shell method
          • •Volume of a sphere (calculus \(2\))
          • •Volume of a cone (calculus 2)
     › Calculus 1 › Integrals › Integration by u-substitution › Integration by u-substitution (less difficult)

    Integration by u-substitution (less difficult): Practice

    \(\displaystyle \int 2x\left(x^2 - 1\right)^4\,dx\)
    $$\begin{align} & u = x^2 - 1 \\ & du = 2x\,dx \\[1.75em] & \int 2x\left(x^2 - 1\right)^4\,dx \\[0.4em] =\ & \int u^4\,du \\[0.4em] =\ & \dfrac{u^5}{5} + C \\[0.4em] =\ & \dfrac{\left(x^2 - 1\right)^5}{5} + C \end{align}$$
    3212Integration by Substitution (1 of 2)
    Eddie Woo
    \(\displaystyle \int 3x^2\left(x^3 + 5\right)^7\,dx\)
    $$\begin{align} & u = x^3 + 5 \\ & du = 3x\,dx \\[1.75em] & \int 3x^2\left(x^3 + 5\right)^7\,dx \\[0.4em] =\ & \int u^7\,du \\[0.4em] =\ & \dfrac{u^8}{8} + C \\[0.4em] =\ & \dfrac{\left(x^3 + 5\right)^8}{8} + C \end{align}$$
    401How to Integrate Using U-Substitution (NancyPi)
    NancyPi
    \(\displaystyle \int \dfrac{x^3}{\sqrt{1 - x^4}}\,dx\)
    \(\dfrac{-1}{2}\left(1 - x^4\right)^{1 / 2} + C\)
    401How to Integrate Using U-Substitution (NancyPi)
    NancyPi
    \(\displaystyle \int x\sqrt{x + 2}\,dx\)
    \(\dfrac{2}{5}(x + 2)^{5 / 2} - \dfrac{4}{3}(x + 2)^{3 / 2} + C\)
    401How to Integrate Using U-Substitution (NancyPi)
    NancyPi
    \(\displaystyle \int \dfrac{\sin x}{\cos^3 x}\,dx\)
    \(\dfrac{1}{2\cos^2 x} + C\)
    401How to Integrate Using U-Substitution (NancyPi)
    NancyPi
    \(\displaystyle \int \left(x^2 + 1\right)^2(2x)\,dx\)
    \(\dfrac{\left(x^2 + 1\right)^3}{3} + C\)
    27715.2 Integration: U-Substitution - Ex.1
    rootmath
    \(\displaystyle \int \left(x^3 + 1\right)^4\left(3x^2\right)\,dx\)
    \(\dfrac{\left(x^3 + 1\right)^5}{5} + C\)
    27715.2 Integration: U-Substitution - Ex.1
    rootmath
    \(\displaystyle \int 3^{\sin \theta}\cos \theta\,d\theta\)
    \(\dfrac{3^{\sin \theta}}{\ln 3} + C\)
    23556Integrating Exponential Functions - Examples 1 and 2
    patrickJMT
    \(\displaystyle \int \left(x^2 - 5\right)^3x\,dx\)
    \(\dfrac{1}{8}\left(x^2 - 5\right)^4 + C\)
    27735.2 Integration: U-Substitution - Ex.3
    rootmath
    \(\displaystyle \int \left(x^3 - 3\right)^2\left(4x^2\right)\,dx\)
    \(\dfrac{4}{9}\left(x^3 - 3\right)^3 + C\)
    27735.2 Integration: U-Substitution - Ex.3
    rootmath
    \(\displaystyle \int \sqrt{5x + 3}\,dx\)
    \(\dfrac{2}{15}(5x + 3)^{3 / 2} + C\)
    27745.2 Integration | U-Substitution - Ex. 4
    rootmath
    \(\displaystyle \int x\sqrt{5x + 3}\,dx\)
    \(\dfrac{1}{25}\left(\dfrac{2(5x + 3)^{5 / 2}}{5} - 2(5x + 3)^{3 / 2}\right) + C\)
    27745.2 Integration | U-Substitution - Ex. 4
    rootmath
    \(\displaystyle \int \sin^2(4x)\cos(4x)\,dx\)
    \(\dfrac{1}{12}\sin^3 4x + C\)
    27755.2 Integration | U-Substitution - Ex. 5
    rootmath
    \(\displaystyle \int_0^2 \dfrac{-4x}{\sqrt{9 - 2x^2}}\,dx\)
    \(-4\)
    27755.2 Integration | U-Substitution - Ex. 5
    rootmath
    \(\displaystyle \int e^{-5x}\,dx\)
    \(\dfrac{-1}{5}e^{-5x} + C\)
    11782Integrating Exponential Functions By Substitution - Antiderivatives - Calculus
    The Organic Chemistry Tutor
    \(\displaystyle \int x^3e^{x^4}\,dx\)
    \(\dfrac{1}{4}e^{x^4} + C\)
    11782Integrating Exponential Functions By Substitution - Antiderivatives - Calculus
    The Organic Chemistry Tutor
    \(\displaystyle \int e^x\sqrt{1 - e^x}\,dx\)
    \(\dfrac{-2}{3}\left(1 - e^x\right)^{3 / 2} + C\)
    11782Integrating Exponential Functions By Substitution - Antiderivatives - Calculus
    The Organic Chemistry Tutor
    \(\displaystyle \int \dfrac{e^x + e^{-x}}{e^x - e^{-x}}\,dx\)
    \(\ln \left\lvert e^x - e^{-x} \right\rvert + C\)
    11782Integrating Exponential Functions By Substitution - Antiderivatives - Calculus
    The Organic Chemistry Tutor
    \(\displaystyle \int \dfrac{e^{1 / x^2}}{x^3}\,dx\)
    \(\dfrac{-1}{2}e^{1 / x^2} + C\)
    11782Integrating Exponential Functions By Substitution - Antiderivatives - Calculus
    The Organic Chemistry Tutor
    \(\displaystyle \int \dfrac{e^{3x} + 4e^x + 5}{e^x}\,dx\)
    \(\dfrac{e^{2x}}{2} + 4x + \dfrac{5e^{-x}}{-1} + C\)
    11782Integrating Exponential Functions By Substitution - Antiderivatives - Calculus
    The Organic Chemistry Tutor
    \(\displaystyle \int 6e^{6x}\,dx\)
    \(e^{6x} + C\)
    27725.2 Integration: U-Substitution - Ex.2
    rootmath
    \(\displaystyle \int 2xe^{x^2}\,dx\)
    \(e^{x^2} + C\)
    27725.2 Integration: U-Substitution - Ex.2
    rootmath
    \(\displaystyle \int \dfrac{e^x + 1}{e^x}\,dx\)
    \(x - e^{-x} + C\)
    23556Integrating Exponential Functions - Examples 1 and 2
    patrickJMT