• TOC
  • Courses
  • Blog
  • Twitch
  • Shop
  • Search
    • Courses
    • Blog
    • Subreddit
    • Discord
    • Log in
    • Sign up
    • ▾Graph theory
      • •Matchings
      • •Minimum spanning tree
      • •Automorphisms of a graph
      • •Tournament graphs
      • ▾Basics of graph theory
        • •Intro to graphs
        • •Isomorphic graphs
        • •Walks, paths, and cycles
        • •Connected graphs
        • •Adjacency and degrees
        • •Subgraphs
        • •Graph components
        • •Adjacency lists, adjacency matrices, and incidence matrices
        • •Other simple planar graphs
        • •Regular graphs
      • •Intro to bipartite graphs
      • ▸Paths and cycles
        • ▸Eulerian cycles and paths
          • •Intro
          • •Using the theorem
        • •Hamiltonian cycles and paths
      • •Planar graphs
      • ▸Coloring
        • •Intro to vertex colorings
      • •Dijkstra's algorithm
      • •Fleury's algorithm
      • •Flows and cuts
      • •Kruskal's algorithm
      • •Minimum vertex covers
      • •Number of edges in a complete graph
      • •Perfect graph
      • •Size of tree is one less than order
      • ▸Trees
        • •Intro to trees
        • •Proving properties of trees
      • •Utilities puzzle
      • •What is a complete graph?
      • •What is a cubic graph?
      • •What is a maximal clique?
      • •What is an edge-induced subgraph?
      • •What is an irregular graph?
      • •What is a spanning subgraph?
      • •What is a vertex-induced subgraph?
      • •Intro to digraphs
      • •Combinatorics and graph theory
      • •Graceful labeling
     › Graph theory › Basics of graph theory

    Isomorphic graphs

    Here's how you can use Geogebra to prove two graphs are isomorphic. Geogebra may also help you rearrange graphs to help you see why they're not isomorphic, as demonstrated in the video.

    YouTube videos

    • 70462What are Isomorphic Graphs? | Graph Isomorphism, Graph Theory
      Wrath of Math