• TOC
  • Courses
  • Blog
  • Shop
  • Search
    • Courses
    • Blog
    • Subreddit
    • Discord
    • Log in
    • Sign up
    • ▾High school geometry
      • ▾Basics of geometry
        • •Proofs in this course
        • •Geometric definitions
        • •Linear pair theorem
        • •Area of a regular polygon
        • •Diagonal length of a right rectangular prism
        • •Distance and midpoint in 3D
        • •Circumcircles and incircles
      • ▸Transformations
        • •Preserved properties of rigid transformations
        • •Find measures using rigid transformations
        • •Find the angle of rotation
        • •Find the sequence of rigid transformations
        • •Reflecting figures
        • •Reflecting a point over any non-horizontal line
      • ▸Congruence
        • •Congruent polygons
        • •Congruent supplements and complements theorems
        • •ASA and AAS congruence
        • •Isosceles triangle theorem and its converse
        • •SSS congruence
        • •SAS congruence
        • •Converse of the Pythagorean theorem
        • •Proving isosceles trapezoids
      • ▸Similarity
        • •Intro to similarity
        • •All circles are similar
        • •Finding angles and side lengths in similar polygons
        • •Finding the scale factor for similar polygons
        • •Third angle theorem
        • •Similar triangles
        • •Ratios of area, surface area, and volume, for similar shapes
        • •Crossed ladders theorem
      • ▸Polygons
        • •Perimeter of composite figures
        • •Finding the volume and surface area of composite figures
        • •Sum of the interior angles of a triangle
        • •Sum of interior angles for simple polygons
        • •Sum of exterior angles
        • •Pentagonal tilings
      • ▸Incenter and circumcenter of a triangle
        • •Intro to the incenter and circumcenter of a triangle
        • •Perpendicular bisector theorem and its converse
        • •Circumcenter theorem
        • •Angle bisector theorem
        • •Incenter theorem
      • ▸Triangles
        • •Euler line
        • •Geometric mean theorems
        • •AM-GM inequality
        • •Triangle angle bisector theorem
        • •Ceva's theorem
        • •Proving the altitude of an isosceles triangle cuts two congruent right triangles
        • •Centroid and orthocenter
        • •Ordering triangle sides and angles
        • •Midsegment and proportionality theorems
        • •Menelaus's theorem
        • •Side splitter theorem
        • •Hinge theorem and its converse
        • •Hypotenuse-leg congruence theorem
        • •Hypotenuse-angle congruence theorem
        • •Areas of triangles and quadrilaterals on grids
        • •Exterior angle theorem
      • ▸Quadrilaterals
        • •Diagonals of a kite are perpendicular
        • •Diagonals of a parallelogram bisect each other
        • •Diagonals of a rhombus are perpendicular bisectors
        • •Area of a rhombus from diagonals
        • •Diagonals of a rectangle are congruent
        • •Opposite sides of a parallelogram are congruent
        • •Opposite angles of a parallelogram are congruent
        • •British flag theorem
        • •Cyclic quadrilaterals
        • •Fuhrmann's theorem
        • •Classifying quadrilaterals from four points
      • ▸Circle theorems
        • •Thales's theorem and its converse
        • •Central angle theorem
        • •Angles standing on the same arc are congruent
        • •Chord properties
        • •Congruent tangents theorem
        • •Radius and tangent theorem
        • •Radii inside right triangles
        • •Alternate segments theorem
        • •Power of a point
        • •Three squares puzzle
      • ▸Volume and surface area
        • •Cavalieri's principle
        • •Volume of prisms and cylinders
        • •Volume and surface area of a sphere
      • ▸Analytic geometry
        • •A square within a square
     › High school geometry › Basics of geometry

    Circumcircles and incircles

    Students will learn what circumcircles and incircles are. Ask your students why the center of any rectangle is also the center of its circumcircle. Then ask them why the hypotenuse of any right triangle is also a diameter of its circumcircle, and further, the circumcenter is always the midpoint of the hypotenuse. This can be proven by copying the right triangle, rotating it \(180^\circ,\) and stitching it to the original right triangle, and thus forming a rectangle. Because the center of any rectangle is also the center of its circumcircle, we know the circumcenter must lie on the hypotenuse, exactly at the midpoint.

    This topic is not covered by Khan Academy

    Conclude by giving your students these challenges:

    • Litov's Mean Value Theorem by NRICH
    • Königsberg by NRICH
    • Oranges and Lemons, Say the Bells of St Clement's by NRICH
    • 2005 AMC 8, Problem 14

    MATHCOUNTS: Find all positive integers \(n\) for which \(n^2 + 45\) is a perfect square. Here's the solution.