• TOC
  • Courses
  • Blog
  • Shop
  • Search
    • Courses
    • Blog
    • Subreddit
    • Discord
    • Log in
    • Sign up
    • ▾High school geometry
      • ▸Basics of geometry
        • •Proofs in this course
        • •Geometric definitions
        • •Linear pair theorem
        • •Area of a regular polygon
        • •Diagonal length of a right rectangular prism
        • •Distance and midpoint in 3D
        • •Circumcircles and incircles
      • ▸Transformations
        • •Preserved properties of rigid transformations
        • •Find measures using rigid transformations
        • •Find the angle of rotation
        • •Find the sequence of rigid transformations
        • •Reflecting figures
        • •Reflecting a point over any non-horizontal line
      • ▸Congruence
        • •Congruent polygons
        • •Congruent supplements and complements theorems
        • •ASA and AAS congruence
        • •Isosceles triangle theorem and its converse
        • •SSS congruence
        • •SAS congruence
        • •Converse of the Pythagorean theorem
        • •Proving isosceles trapezoids
      • ▸Similarity
        • •Intro to similarity
        • •All circles are similar
        • •Finding angles and side lengths in similar polygons
        • •Finding the scale factor for similar polygons
        • •Third angle theorem
        • •Similar triangles
        • •Ratios of area, surface area, and volume, for similar shapes
        • •Crossed ladders theorem
      • ▸Polygons
        • •Perimeter of composite figures
        • •Finding the volume and surface area of composite figures
        • •Sum of the interior angles of a triangle
        • •Sum of interior angles for simple polygons
        • •Sum of exterior angles
        • •Pentagonal tilings
      • ▸Incenter and circumcenter of a triangle
        • •Intro to the incenter and circumcenter of a triangle
        • •Perpendicular bisector theorem and its converse
        • •Circumcenter theorem
        • •Angle bisector theorem
        • •Incenter theorem
      • ▾Triangles
        • •Euler line
        • •Geometric mean theorems
        • •AM-GM inequality
        • •Triangle angle bisector theorem
        • •Ceva's theorem
        • •Proving the altitude of an isosceles triangle cuts two congruent right triangles
        • •Centroid and orthocenter
        • •Ordering triangle sides and angles
        • •Midsegment and proportionality theorems
        • •Menelaus's theorem
        • •Side splitter theorem
        • •Hinge theorem and its converse
        • •Hypotenuse-leg congruence theorem
        • •Hypotenuse-angle congruence theorem
        • •Areas of triangles and quadrilaterals on grids
        • •Exterior angle theorem
      • ▸Quadrilaterals
        • •Diagonals of a kite are perpendicular
        • •Diagonals of a parallelogram bisect each other
        • •Diagonals of a rhombus are perpendicular bisectors
        • •Area of a rhombus from diagonals
        • •Diagonals of a rectangle are congruent
        • •Opposite sides of a parallelogram are congruent
        • •Opposite angles of a parallelogram are congruent
        • •British flag theorem
        • •Cyclic quadrilaterals
        • •Fuhrmann's theorem
        • •Classifying quadrilaterals from four points
      • ▸Circle theorems
        • •Thales's theorem and its converse
        • •Central angle theorem
        • •Angles standing on the same arc are congruent
        • •Chord properties
        • •Congruent tangents theorem
        • •Radius and tangent theorem
        • •Radii inside right triangles
        • •Alternate segments theorem
        • •Power of a point
        • •Three squares puzzle
      • ▸Volume and surface area
        • •Cavalieri's principle
        • •Volume of prisms and cylinders
        • •Volume and surface area of a sphere
      • ▸Analytic geometry
        • •A square within a square
     › High school geometry › Triangles

    Centroid and orthocenter

    Students will learn about the centroid and orthocenter, two of the four centers of triangles. First, students will learn what medians are, then what the centroid is, then what the centroid theorem says. After that, they'll learn what the orthocenter is. Students should see that the centroid always lies inside the triangle, while the orthocenter lies inside acute triangles, outside obtuse triangles, and on the boundary of right triangles. Here's a video on the centroid and orthocenter. Next, students will learn how to find the orthocenter given the coordinates of a triangle's vertices. Finally, students will learn why the three medians cut a triangle into six triangles of equal area (video).

    Conclude by giving your students these challenges:

    • Happy Octopus by NRICH
    • Triangle Numbers by NRICH
    • Painted Faces by NRICH
    • An Unhappy End by NRICH

    Lessons and practice problems