Convert to predicate logic:
$$\begin{align}
& A \cup B \subseteq C \setminus D \\
& A \cup B \not\subseteq C \setminus D
\end{align}$$

Convert to predicate logic: \(\displaystyle x \in \bigcup_{i \in I} (A_i \cup B_i)\)

Convert to predicate logic: \(A \cap (B \setminus C) = \emptyset\)

Convert to predicate logic: \(\mathcal{F} \subseteq \mathcal{P}(A)\)

Convert to predicate logic: \(A \subseteq \{5n^2 - 2 : n \in \mathbb{N}\}\)